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Visual adaptation is expected to improve visual performance in the
new environment. This expectation has been contradicted by
evidence that adaptation sometimes decreases sensitivity for the
adapting stimuli, and sometimes it changes sensitivity for stimuli
very different from the adapting ones. We hypothesize that this
pattern of results can be explained by a process that optimizes
sensitivity formany stimuli, rather than changing sensitivity only for
those stimuli whose statistics have changed. To test this hypothesis,
we measured visual sensitivity across a broad range of spatiotem-
poral modulations of luminance, while varying the distribution of
stimulus speeds. The manipulation of stimulus statistics caused
a large-scale reorganization of visual sensitivity, forming the orderly
pattern of sensitivity gains and losses. This pattern is predicted
by a theory of distribution of receptive field characteristics in the
visual system.
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A basic tenet of sensory biology is that sensory systems adapt to
the environment. The adaptation is reflected in static and

dynamic characteristics of sensory performance. Viewed statically,
sensory systems are highly selective; their sensitivity varies across
stimuli as if they favor certain stimuli over others. Dynamically,
stimulus selectivity varies across time; it is modified when the en-
vironment changes. Thus, stimuli favored in the new environment
may be different from those favored in the old environment.
One may view the static and dynamic characteristics of sensory

systems as nature’s solutions to the problem of resource allocation.
A large but limited number of sensory neurons are divided be-
tween many potential stimuli. The division follows the principle of
more resources allocated to the more useful stimuli. A striking
illustration of this principle is the cortical homunculus (1), a map
of the skin and epithelia in the human primary somatosensory
cortex (Fig. 1A). Different skin areas have disproportionate rep-
resentations in themap because of their differential utility: the lips
and fingers have much larger neuronal representations than calves
and shoulders (2).
A similar picture is found in visual systems. The contrast

sensitivity function in Fig. 1 C and D describes the human ability
to detect modulations of luminance across a broad range of
spatiotemporal stimuli (3). The distribution of neuronal prefer-
ences in the primary visual cortex is similar to the distribution of
contrast sensitivity, illustrated in Fig. 1B for spatial stimuli (4, 5).
It has been argued that the visual stimuli to which we are more
sensitive are preferentially useful for perceptual behavior (6–9),
similar to how we are more sensitive in the skin regions where
high sensitivity is more useful.
Changes in visual stimulation have been widely expected to have

the effect of improving visual performance in the new environment
(10–12). However, some studies of visual adaptation appear to
contradict this expectation. Many procedures have been used to
imitate environmental change (13–19). Though some studies
found that behavioral and neuronal visual performance improved
for stimuli prevailing in the new (“adapting”) environment (20–23),
other studies found that performance did not change or it declined
where it was expected to improve (16, 20, 23), or the changes oc-
curred for stimuli very different from the adapting ones (20, 23).
We propose that the previous results appear to be inconsistent,

because changes of performance have been expected to mirror
changes in stimulus statistics. This “stimulus account” of adapta-
tion disregards the notion that visual systemsmust be prepared for
performing multiple tasks, using a broad range of stimuli. As an

alternative, we examine a “system account” of adaptation in which
adaptive changes are not confined to the stimuli whose statistics have
changed. Rather, the adaptive changes are expected to occur for the
entire ensemble of potential stimuli.Weconsider a theoryof how the
broad allocation of neural resources can be performed optimally,
provided that the expected precision of estimating stimulus location
and content, spatial and temporal, varies across stimuli (24).
Predictions by the two accounts of adaptation are illustrated

schematically in Fig. 2, using the representation of visual perfor-
mance introduced in Fig. 1. Suppose stimulation has changed as
indicated in Fig. 2A and the mean speed of stimuli has increased.
By the stimulus account, contrast sensitivity will increase or de-
crease for the stimuli that became, respectively, more or less
common (Fig. 2B). By the system account, adaptive changes will
bear upon the entire contrast sensitivity function, rather than the
sensitivity for isolated stimuli, leading to the changes of sensitivity
illustrated in Fig. 2C.
According to a theory of efficient allocation of neural

resources in the visual system (24), the sensitivity function
reflects an optimization with respect to the full range of po-
tential spatiotemporal stimuli, and in view of the fact that small
and large receptive fields are not equally suitable for measuring
stimulus location and frequency content. The stimuli for which
the sensitivity is predicted to be maximal for each speed form
a set, whose graphical representation is a curve similar to curve
“max” in Fig. 1D. Under changes in stimulus statistics, the shape
of the curve is expected to remain largely the same, but the po-
sition of the curve is predicted to change as shown in Fig. 2C.
The thick and thin curves in Fig. 2C represent the predictions

of the system account for maximal sensitivity in the high-speed
and low-speed environments, respectively. Because of the bent
shape of the curve, its displacement is expected to entail a pat-
tern of sensitivity changes radically different from the pattern
predicted by the stimulus account in Fig. 2A.
In summary, given the same change of stimulation, the stimulus

account predicts homogeneous changes of sensitivity within speeds.
The system account predicts both gains and losses of sensitivity
within speeds, the gains and losses reversed across speeds. At low
speeds, gains are expected at lower spatiotemporal frequency con-
ditions than losses. At high speeds, gains are expected at higher
frequency conditions than losses.
From the perspective of the system account, effects of adap-

tation measured in small sets of stimuli can be misleading. Be-
cause individual parameters of contrast sensitivity vary from
observer to observer, the regions of gains and losses of sensitivity
in the stimulus space will vary too. One may accidentally sample
the conditions where sensitivity increases or decreases. The
results may appear to support the view that sensitivity improves
for the more common stimuli, results may appear to oppose that
view, or they may add up to a confusing mixture, perhaps of
the kind observed in previous studies of visual adaptation. We
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therefore compared the disparate predictions of Fig. 2 B and C
using broad assays of contrast sensitivity.
We generalized a recently developed efficient psychophysi-

cal method (25) so we could rapidly measure adaptive sensitivity
changes for a large part of the domain of contrast sensitivity
function. Using the manipulation of stimulus statistics described
in Fig. 2A, we found that adaptive changes of sensitivity did
not mirror changes in stimulus statistics. The changes were, how-
ever, similar to those predicted by the system account, supporting
the view that nature’s solution to the problem of neural resource
allocation is similar to an optimal solution (24).

Results
We performed two experiments. First, we confirmed that our
estimates of the spatiotemporal contrast sensitivity function were
consistent with previous estimates (experiment 1) as a preparation
for measuring transformations of this function (experiment 2).

Static Characteristics. In experiment 1 we used drifting luminance
gratings to estimate the amount of luminance contrast that made
the gratings just visible at multiple spatial and temporal fre-
quencies of luminance modulation. The stimuli spanned the en-
tire domain of the contrast sensitivity function (Fig. 1D). On every
trial, observers reported the direction of motion of drifting lu-
minance gratings at different spatial and temporal frequencies of
luminance modulation and luminance contrasts.
Stimulus selection was controlled by a generalized procedure

of Lesmes et al. (25). The procedure allowed us to estimate the
entire sensitivity function from every observer within one ex-
perimental session, repeated several times for each observer.
Stimulus conditions were sampled from a broad grid of spatial
and temporal frequencies of luminance modulation: the stimulus
grid illustrated in Fig. 2A. The stimulus selected from the grid
on every trial maximized the increment of information about
parameters of the sensitivity function rather than about sensi-
tivities at individual nodes of the grid (Methods).

A B C D

Fig. 1. Selectivity of sensory systems. (A) Somatosensory homunculus: a neuronalmapof the skin and epithelia in the human cerebral cortex. The size of neuronal
representation of skin regions correlates with sensitivity to tactile stimuli (2). (B) Distribution of the peaks of spatial frequency tuning functions for neurons in
macaque primary visual cortex. The cell tuningwasmeasured for low temporal frequencies, corresponding to a section of the contrast sensitivity function in C. As
inA, the size of neuronal representation of a stimulus correlates with the sensitivity to that stimulus. (C) Human spatiotemporal contrast sensitivity function. The
varying height of the surface represents the varying contrast threshold: the amount of luminance contrast (“modulation”) thatmakes the stimulus just visible; the
smaller the modulation at the threshold the higher the sensitivity. (D) A contour plot of the sensitivity function from C. The level curves are the isosensitivity
contours, here plotted for five magnitudes of contrast threshold, from 0.005 to 0.08. The ratios of temporal frequency to spatial frequency are stimulus speeds,
notated on top right. Stimulus conditions that correspond to the same speed form a diagonal line. Such constant-speed lines for different speeds are parallel to
one another in the logarithmic coordinates. The lines are plotted for nine speeds spanning a 500-fold range of speed. The thicker curve labeled “max” connects
points of maximal sensitivity across speeds. [A is reproduced from ref. 1; C and D are adapted from ref. 3; B is reprinted from ref. 4: Vision Research, 22/5, De
Valois et al., Spatial frequency selectivity of cells in macaque visual cortex. Copyright 1982 with permission from Elsevier.]

A B

C

Fig. 2. Predictions of sensitivity change. (A) The
disks represent stimulus conditions arranged on
seven constant-speed lines in the domain of the
spatiotemporal sensitivity function (the stimulus
space) in Fig. 1D. The histograms on top right illus-
trate stimulus contexts. In the high-speed context
(HS, the dark histogram), high speeds are sampled
more often than low speeds. In the low-speed con-
text (LS, light histogram), low speeds are sampled
more often. The mean speeds of the contexts are
12 and 6 deg/s. The red and blue disks mark the
stimulus conditions for which stimulus frequency
increases and decreases across contexts from LS to
HS, respectively. (B) Schematic representation of
predictions by the stimulus account. Sensitivity is
expected to increase (red) or decrease (blue) where
stimulation becomes, respectively, more or less fre-
quent. (C) Schematic representation of predictions
by the system account (Outline of the System Ac-
count of Visual Adaptation). The thick and thin
curves represent the theoretical maximal-sensitivity
conditions for HS and LS contexts, respectively. The
high-speed curve is shifted along the dimension of
speed (i.e., up and to the left) relative to the low-
speed curve. Because of the shape of the curves, the pattern of expected gains and losses of sensitivity (rendered in red and blue, respectively, as in B) reverses
across speed.
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The results were highly consistent with previous estimates of
sensitivity; the distribution of sensitivity across stimuli had the
characteristic shape (Fig. 3B), well approximated by the standard
model of human spatiotemporal sensitivity: the Kelly function (3)
(R2 = 84%, P � 0.01; the fitting procedure is described in Meth-
ods.) The evidence that our experimental procedure yielded esti-
mates of sensitivity consistent with the standard model allowed us
to use the same data-modeling approach in the next experiment.

Dynamic Characteristics. In experiment 2, we studied how the sen-
sitivity function depends on statistics of stimulation. We created
two contexts of stimulation by varying how often stimuli were
sampled from the same stimulus grid (Fig. 2A). Now the stimulus
grid spanned a narrower range of speeds than in experiment 1,
ensuring that differences between speeds in the two contexts were
sufficiently large. In the low-speed context (Fig. 2A, light-colored
bars) stimuli were sampled more often from low-speed than high-
speed nodes of the grid, yielding the mean speed of 6 deg/s. In the
high-speed context (dark bars), the sampling pattern was reversed,
yielding the mean speed of 12 deg/s. The estimates for different
contexts were obtained on different days.
We fitted the estimates of sensitivity from each stimulus context

using the Kelly function as in Fig. 3B. As in experiment 1, we found
an excellent agreement between the raw and fitted estimates of
sensitivity (Fig. S1; lowestR2 = 0.85), which allowed us to compute
the continuous maps of sensitivity change introduced below.
Examples of sensitivity functions obtained this way for the two
stimulus contexts are displayed in Fig. 4A. Sensitivity functions for
all observers are displayed in Fig. S2. For all observers, the esti-
mates of sensitivity from different stimulus contexts were signifi-
cantly different from one another (P� 0.01 for both raw and fitted
estimates). Notably, both increments and decrements of sensitivity
were found within every measured speed, summarized in Fig. S1.
In Fig. 4A, sensitivity changes are plotted for two speeds (Fig.

4A Upper) and for the entire domain of the sensitivity function
(Fig. 4A Lower). Sensitivity changes were

ϕi = 100ðhi − liÞ=hi; [1]

where hi and li were respective entries in the high-speed and low-
speed sensitivity functions. The plots in the upper part of Fig. 4B
demonstrate a reversal of sensitivity change across speeds similar
to the reversal anticipated by the system account in Fig. 2C. At
the low speed, sensitivity decreased for low spatiotemporal fre-
quency conditions and increased for high-frequency conditions.
At the high speed, the pattern was reversed.
The seemingly erratic alterations of sensitivity within the narrow

samples of stimulus conditions corroborate the notion that changes

of sensitivity must be studied over large stimulus sets. As in Fig. 2C,
results that appear baffling in narrow stimulus samples may add up
to a tractable, predictable picture in large samples. We therefore
sought to evaluate patterns of sensitivity change across the full
range of tested stimulus conditions.

Analysis of Change Maps. Using permutation analysis of the in-
dividual change maps, first we established that the measured
changes of sensitivity were unlikely to arise by chance (P < 0.01;
Methods). We then evaluated the 2D patterns of sensitivity
change captured by the maps in Fig. 5.
For all observers, the measured patterns of sensitivity change

were inconsistent with the stimulus account (Fig. 2B). In every
map, sensitivity changes were nonmonotonic within speeds. The
nonmonotonicity was predicted by the system account, but the
degree to which the measured sensitivity changes were similar to
the changes predicted by the system account (Fig. 2C) varied
across observers. Two regions of sensitivity gain and two regions of
sensitivity loss were found at the expected locations in the change
map of observerO3 (mapO3); three of the regions were present in
maps O1 and O4, and two regions in map O2.
Some diversity of change maps was expected in the system ac-

count, however, because regions of sensitivity change were defined
relative to the characteristics of sensitivity that varied across
observers (Fig. S2). According to the theory underlying the system
account (24), the shape of the maximal-sensitivity set ought to be
invariant under changes in stimulus statistics, but the position of
the set ought to depend on the statistics. We therefore evaluated
the change maps using templates of sensitivity change derived
relative to the individual maximal-sensitivity sets.
The system template of sensitivity change consisted of four

regions where gains and losses of sensitivity were predicted by
the system account, as illustrated in Fig. 6A: gains in regions 1
and losses in regions 2. The regions were defined with respect to
the individual maximal-sensitivity sets as explained in SI Methods.
In Fig. 5, the regions are demarcated by black lines.
To compare our results with predictions of the two accounts in

similar terms, we have also used a stimulus template of sensitivity
change. The stimulus template (Fig. 6B) consisted of regions
bound to the pattern of stimulus change (Fig. 2A). As shown in
Fig. 6B, gains and losses of sensitivity were expected in regions
labeled 1 and 2, respectively, and no change of sensitivity was
expected in the region labeled ⊖.
The match between the templates of sensitivity change and the

measured changes of sensitivity was quantified using cumulative
evidence

E∀ =Eð+Þ −Eð−Þ; [2]

where E(+) and E(−) were the mean changes of sensitivity re-
spectively consistent and inconsistent with the templates (SI
Methods). The higher the magnitude of E∀, the better the match
of the data and the template, because the evidence of changes
consistent with the template was positive, and the evidence of
changes inconsistent with the template was negative.
The stimulus template was the same for all observers because

it was defined relative to stimulation, and stimulation did not
vary across observers. High evidence E∀ for the stimulus account
would result if the measured changes of sensitivity followed the
simple pattern captured by the stimulus template.
The system template had a different manifestation for every

observer, because the template was defined relative to observer’s
individual sensitivity characteristics. High evidence E∀ for the sys-
tem account would result if the measured changes of sensitivity
formed a pattern similar to the pattern predicted by the stimulus
account, i.e., if the gains and losses of sensitivity were arranged
relative to the maximal-sensitivity sets similar to how they were
arranged in the system template.
Results of the template-matching analysis are summarized in Fig.

6C. Cumulative evidence E∀ for the system account is represented
by the dark bars. In every case, the cumulative evidence was
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Fig. 3. Results of experiment 1. (A) The circles and lines represent the sam-
pled stimulus conditions. We measured “slices” of the spatiotemporal sensi-
tivity function: at one spatial or one temporal frequency (one column or one
row of circles), or at one speed (an oblique line). (B) Results of experiment 1 in
one observer (O3). The contour plot is an estimate of contrast sensitivity
function obtained by fitting a standard model (3) to the estimates of sensi-
tivity at conditions marked by circles in A. The white crosses mark conditions
where sensitivity was maximal within the speeds marked by oblique lines in A.
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significantly greater than expected by chance (P < 0.01 for every
observer, estimated by resampling; SI Methods). The cumulative
evidenceE∀ for the stimulus account is represented by the light bars.
Cumulative evidence was against the stimulus account for two
observers (O1 and O3): the negative values of E∀ were significantly
more negative than expected by chance (P< 0.05 for both observers).

For the two other observers, E∀ was weakly in favor of the stimulus
account, but it was statistically indistinguishable from chance.

Discussion
We found that changes in statistics of speed of visual stimuli caused
a large-scale reorganization of spatiotemporal contrast sensitivity.
Monotonic changes in stimulus speed induced changes of sensi-
tivity that were highly nonmonotonic across speed, forming distinct
regions of gains and losses of sensitivity summarized by the change
maps in Fig. 5.
The results were unlikely to arise from changes in attentional or

decision strategies by our observers. Had the observers registered
the changes in stimulation and dedicated more attention to the
more likely stimuli (26), or had they altered their decision biases in
accord with stimulation (27, 28), changes of performance would
form a pattern portrayed in Fig. 2B. In the high-speed context the
sensitivity would increase for high speeds and decrease for low
speeds (Fig. 2B), in comparison with the sensitivity in the low-speed
context. Instead, the changes of sensitivity formed clusters of gains
and losses inconsistent with this stimulus account of adaptation.
The observed changes of sensitivity were consistent with the

system account of adaptation (Fig. 2C) in which gains and losses
of sensitivity were expected within high speeds and within low
speeds. The system account rests on a theory concerned with al-
location of limited neural resources in the visual system (24).
According to the theory, the spatiotemporal contrast sensitivity
function (Fig. 1) reflects an optimal allocation of neurons char-
acterized by receptive fields of different sizes. The allocation
optimizes sensory performance with respect to the entire ensemble
of potential stimuli. Changes in stimulation are therefore expected
to cause changes in characteristics of neurons sensitive to a wide
range of stimuli, manifested in a large-scale transformation of the
sensitivity function.
For two reasons, the present results are likely to generalize to

other stimuli and tasks. First, the differences in visual perfor-
mance across stimuli revealed by the spatiotemporally contrast
sensitivity function were found to generalize to many stimuli and
tasks (29, 30). Second, predictions of the theory of optimal re-
source allocation (24) are not confined to contrast sensitivity as
a measure of visual performance.
What mechanisms are likely to control the efficient allocation of

receptive fields? Studies of cortical neurons selective for moving
stimuli have shown that, just as in the somatosensory homunculus
(Fig. 1A), the number of neurons selective for a stimulus correlates
with sensitivity to that stimulus. For example, the number of
neurons selective for spatial and temporal frequencies of lumi-
nance modulation correlates with the contrast sensitivity at those
spatial frequencies (5, 31, 32) (Fig. 1B). Therefore, it is likely that

A B

Fig. 4. Results of experiment 2. (A) Contrast sensitivity
functions measured in the two stimulus contexts for one
observer (O1). A standard model of contrast sensitivity
was fitted to the estimates of sensitivity in high-speed
(Upper) and low-speed (Lower) contexts. The warm and
cool colors represent high and low sensitivities. Sensi-
tivity functions for all observers are displayed in Fig. S2.
(B) The change map on the bottom summarizes how
sensitivity changed from the low-speed to high-speed
stimulus contexts for all stimulus conditions (Eq. 1). The
shades of red and blue represent the gains and losses of
sensitivity, and the white regions represent no change.
Above the map, samples of sensitivity changes for two
speeds demonstrate that the pattern of gains and losses
of sensitivity is reversed across speeds, similar to the
prediction illustrated in Fig. 2C. Change maps for all
observers are displayed in Fig. 5.

Fig. 5. Change maps. The maps were computed according to Eq. 1. The black
lines demarcate regions where gains and losses of sensitivity were expected
according to the system account of adaptation introduced in Fig. 2C. Because
parameters of individual sensitivity functions varied from across observers,
the boundaries between regions of expected gains and losses were derived
individually, and template structure remained the same (SI Methods). The
numerical display in the bottom right corner of each panel summarizes how
well the measured change map was matched by the system template (Eq. S1).
The larger the index, the better the match. (The change maps are also dis-
played in Fig. S2, where changes of sensitivity are scaled by estimation errors,
helping to appreciate how effect size varied across stimuli.)
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effects of adaptation observed in the present study aremediated by
changing preferences of many neurons, across a broad range of
preferred stimuli, and from different cortical areas where neuronal
receptive fields have different sizes (33).
Previous studies of the neural mechanisms of motion adaptation

support this expectation. For example, motion-sensitive neurons in
cortical visual area middle temporal (MT) of behaving macaque
monkeys were found to change their speed selectivity and sensi-
tivity after a short exposure to moving visual patterns (23). These
changes occurred in neurons selective for both the adapting con-
ditions and conditions very different from the adapting. Speed
sensitivity increased for some stimuli but decreased for others.
Similar neuronal changes were found in other visual submodalities
(34) and other sensory modalities (35).
Our behavioral results suggest that such neuronal changes

should form a lawful pattern across the space of stimulus param-
eters, as in the change maps displayed in Fig. 5. Previous physio-
logical studies did not allow one to test such predictions because
the range of stimuli used was too narrow, or the stimuli were
broadband (they had very broad representations in the frequency
domain). Future studies can pursue this issue by assaying adap-
tation-induced changes of sensitivity in neurons with very different
stimulus preferences, using stimuli with well-defined frequency
content, such as luminance gratings or grating mixtures (36).
Studies of the relationship of single sensory neurons and sen-

sory behavior have often concentrated on how signals from mul-
tiple neurons with similar preferences are combined to optimize
behavior (37–39). Our results suggest that this question must be
approached from a broader perspective, asking how multiple
neurons with very different stimulus preferences are allocated to
stimuli. Whether an individual neuron ought to increase or de-
crease its sensitivity to particular stimulus depends on that neu-
ron’s context—i.e., where its selectivity is located in the space of
stimulus parameters relative to the preferences of other neurons,
and against the entire distribution of system’s sensitivity.

The theme of efficient allocation of neural resources has been
long pursued in research of visual attention (40, 41). Numerous
studies showed that allocation of attention in the visual system is
mediated by rapid changes in preference (gain and selectivity) of
individual neurons (42–45). For example, motion-sensitive neu-
rons in cortical visual area MT in macaque monkeys shifted their
spatial preferences toward the attended stimulus location, and
spatial preferences of many neurons at the attended location
sharpened (46). Adaptation, too, was found to induce changes of
neuronal preferences in this cortical area (23, 47). It is plausible
that effects of adaptation and attention are mediated by the
same neural circuits, even though the two processes are pre-
sumably governed by different constraints (48, 49). Adaptation

and attention can therefore manifest two strategies that nervous
systems deploy over different temporal scales to achieve their
unmatched versatility with limited resources.

Methods
Apparatus and Stimuli. The stimuli were displayed on a Sony Trinitron CRT
monitor at 120 Hz refresh rate using Psychtoolbox toolkit (50, 51). High gray-
scale resolution (14 bits) was attained using a commercially available circuit
(52). The stimuli were drifting sinusoidal luminance gratings at different spa-
tial (fs) and temporal (ft) frequencies of luminance modulation. Stimulus lu-
minance profile was L = L0[1 + c sin 2π(fx + ftt) + ϕ], where c is luminance
contrast, t is time, and ϕ is phase. Mean luminance L0 was set to the middle of
the display’s dynamic range (81 cd/m2). The stimulus was rendered on a 400 ×
400 array of pixels, subtending 2.08× 2.08°. Stimulus luminancewas tapered at
the edges using a Gaussian window whose SD was 0.5 of the spatial wave-
length (1/fs) of the current stimulus. Stimulus durations were set at one full
cycle of the temporal frequency of luminance modulation. Observers received
an auditory cue before each trial about the spatial frequency of the upcoming
stimulus (small, medium, or large) and a brief auditory signal was presented
immediately after the stimulus to reduce temporal uncertainty. The stimuli
were viewed binocularly with the natural pupil at the viewing distance of 225
cm in dim light. Direction of movement (up or down) was randomly selected
for each trial. The task was direction discrimination. Observers indicated the
perceived motion direction (up or down) by pressing a key, and received au-
ditory feedback about the correctness of response.

Psychophysical Procedure. Stimulus spatial and temporal frequencies fs and ft
were arranged on a grid in the stimulus parameter space as illustrated in Fig.
2A for experiment 1 and Fig. 3A for experiment 2. Stimulus parameters for
every trial were sampled from the stimulus grid using an efficient Bayesian
procedure that was a generalization of the quick CSF procedure (25) to
stimulus dimensions fs and ft. This procedure greatly accelerated measure-
ment of sensitivity using an information gain algorithm (53, 54) that esti-
mated parameters of sensitivity functions directly, rather than estimating
sensitivities at individual stimulus conditions. In experiment 1, the procedure
sampled stimulus parameters either from the rectangular grid represented
by the disks in Fig. 3A, or from the oblique grid represented by the diagonal
lines in the same figure. In experiment 2, only the latter procedure was used
for the seven speeds indicated in Fig. 2A. In every experimental session, the
seven procedures were run independently and concurrently, their trials in-
terleaved, with 50 trials per procedure. Each procedure used the same prior
distribution defined as in equation A1 in ref. 25. Sessions were repeated
three times for every observer. Each session (350 trials) lasted no longer than
40 min. Estimates of contrast sensitivity were averaged across sessions for
every node of stimulus grid and fitted by the Kelly model (3) as described in
Modeling Spatiotemporal Sensitivity.

Observers. Four human observers took part in the experiment (three males
and one female): two of the authors and two naive. The observers had normal
or corrected-to-normal vision. All participants provided informed consent to

A B C

Fig. 6. Analysis of changemaps. (A and B) Templates of sensitivity change predicted by the system account (A) and stimulus account (B). Sensitivity was expected
to change from the low-speed to high-speed stimulus contexts: increase in regions 1 and decrease in regions 2. No changewas expected in region⊖. (C) Results of
template matching. The cumulative evidence for both accounts was computed by Eq. 2. The error bars represent 95% confidence intervals. The evidence for the
system account is significant for every observer; for the stimulus account it is either negative (observers O1 andO3) or indistinguishable from chance (O2 and O4).
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participate in the experiment. The experiments followed a protocol ap-
proved by the Salk Institute’s Institutional Research Board.

Modeling Spatiotemporal Sensitivity. Analysis of contrast sensitivity was
performed both using the raw estimates of sensitivity produced by our
psychophysical procedure for nodes of the stimulus grid, and using fitted
functions of spatiotemporal contrast sensitivity. The fits were derived
using the Kelly function (i.e., equation 5 in ref. 3): G(α, υ) = kυα2exp(−2α/
αmax), where υ is speed, α is a constant inferred by Kelly from spatial
frequency characteristics of receptive fields, and k and αmax are speed-
dependent coefficients. The raw estimates were obtained for 36 stimulus
conditions in experiment 1 (Fig. 2A) and for 56 conditions in experiment
2 (Fig. 2A).

Kelly function was fitted to the raw estimates of sensitivity on a grid of 60
spatial and 80 temporal frequency conditions, the same in experiments 1 and 2.
The fits accounted for the average of 84% of the variability (R2) of raw sen-
sitivity estimates (SD 8%). Using permutation analysis, we found that the
probability to obtain such a fit by chance was smaller than 0.01, for all
observers. (The individual coefficients of determination R2 were 0.81, 0.91,
0.75, and 0.92 for observers O1–O4, respectively.) Maximal-sensitivity sets
and were estimated for the high-speed and low-speed stimulus contexts,

respectively, by finding the stimulus conditions at which the Kelly models had
maximal values on multiple constant-speed lines. Parameters of and
were used to derive the templates of sensitivity change described below.

Permutation Analysis of Sensitivity. We evaluated differences between con-
trast sensitivity estimates from different stimulus contexts using standard
randomization methods. Sensitivity estimates in each stimulus context were
randomly and repeatedly permuted, and root mean square differences Dk

between the permuted estimates were computed on each iteration K,
forming distribution D of such differences. Fraction p of D that was smaller
than zero was an estimate of the probability that the measured difference
between sensitivities in the two stimulus contexts occurred by chance.
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SI Methods
Templates of Sensitivity Change. The similarity of measured and
predicted changes of sensitivity was measured using the templates
illustrated in Fig. 6.
For the stimulus account, templates were determined by

stimulus statistics (Fig. 2A). The boundaries of template regions
were 11 and 45 deg/s for the region of expected gain, 1.4 and 0.36
deg/s for the region of expected loss. No changes were expected
between the speeds of 0.36 and 11 deg/s.
For the system account, the template consisted of four regions

where the system account predicted gains and losses of sensitivity
(Fig. S3B). Because the predictions depended on locations of
maximal-sensitivity sets , the boundaries between regions were
derived in two steps. First, parameters of were estimated for
each stimulus context, as explained in section Modeling Spatio-
temporal Sensitivity (Methods). Second, five boundaries were
placed as explained in Fig. S3B.
Spatial boundary S was placed between the spatial asymptotes

of and (i.e., the asymptotes of parallel to the spatial-
frequency axis of the stimulus space). Temporal boundaries T1
and T2 were parallel to the temporal-frequency axis: T1 was
placed between the temporal asymptotes of and , and T2
limited the region of large expected changes of sensitivity at high
temporal frequencies. Speed boundaries V1 and V2 were drawn
diagonally, through the point of intersection of and
represented in Fig. S3 by the yellow disk.
Because parameters of differed across observers, the same

structure of template generated different shapes of template re-
gions in different observers (Fig. 5). Even though system templates
were derived frommeasured observer characteristics, themeasured
changes of sensitivity captured by the four regions of the system
template could be radically different from the changes predicted by
the system account. For example, if the measured distribution of
sensitivity had shifted in the direction opposite to that predicted by
the system account, the positive and negative measured changes of
sensitivity would be found in the regions where negative and posi-
tive changes were expected, respectively, yielding negative evidence
E∀ for the system account (Eq. 2).

Analysis of Sensitivity Changes Within Templates. Results would
agree with predictions if the measured gains were consistently
found where gains were expected, and the measured losses were
consistently found where losses were expected. The agreement
was quantified using cumulative index

Δ∀ =ΔG −ΔL; [S1]

where ΔG and ΔL were the mean changes of sensitivity on the
nodes of stimulus grid for which gains and losses of sensitivity
were expected, respectively. Because ΔG is expected to be pos-
itive, and ΔL is expected to be negative, the larger the value of
Δ∀ the better the match to template. Individual values of Δ∀ for
the system account are displayed in the bottom right corner of
every panel in Fig. 5. Errors of Δ∀ were estimated for every
observer. Measured sensitivity changes were resampled within
template regions, and distributional properties of Δ∀ were
computed from the resampled regional sensitivity changes. The
resampling analysis showed that the measured magnitudes of Δ∀
were unlikely to arise by chance (P < 0.01).
Cumulative evidence for alternative accounts of adaptation was

computed on the nodes of the stimulus grid according to Eq. 2.

For the system account, the two components of cumulative evi-
dence were

Eð+Þ =G1 −L2 [S2]

Eð−Þ =L1 −G2; [S3]

where Gi and Li stand for the mean gains and mean losses of
sensitivity in template regions 1 and 2, indicated by the subscripts
(Fig. 6A). For the stimulus account, component E(+) was the
same as in Eq. S2. However, component E(−) differed from Eq.
S3 because now cumulative evidence had to incorporate the
predicted absence of sensitivity change in the neutral region
(white region labeled ⊖ in Fig. 6B):

Eð−Þ =L1 −G2 −N; [S4]

where N was the mean absolute change of sensitivity in the
neutral region.
Confidence intervals for cumulative evidence E∀ were esti-

mated for every observer separately for the system account and
the stimulus account (Fig. 6). Individual sensitivity changes were
resampled separately on the nodes that supported either account
(E+) and the nodes that opposed either account (E−), and then
cumulative evidence E∀ = E(+) − E(−) was computed from the
resampled sensitivity changes. Significance of E∀ was evaluated
using 95% and 99% confidence intervals.

Outline of the System Account of Visual Adaptation
Here we summarize key steps in derivation of the optimal set:
a theoretical equivalent of the measured maximal-sensitivity curve
labeled “max” in Fig. 1D. A complete derivation is presented in
Gepshtein et al. (1). The theory predicts that the shape of the
curve remains invariant under changes in statistics of stimulation,
but the position of the curve in the stimulus space depends on
stimulus statistics (Fig. 2C).

Joint Measurement Uncertainty. Neurons tuned to stimuli in dif-
ferent parts of the domain of spatiotemporal contrast sensitivity
function (the “stimulus space”) have receptive fields of different
size. The neurons are therefore expected to convey information
about stimulus parameters with different uncertainty (different
precision). According to the uncertainty principle formulated by
Gabor (2), uncertainty of measuring stimulus frequency content is
low for large receptive fields and high for small receptive fields.
Conversely, the uncertainty of measuring stimulus location is high
for large receptive fields and low for small receptive fields. The
argument applies equally to the spatial and temporal aspects of
stimuli. Assuming that the same neurons are used to measure the
locations and frequency content of stimuli, Gepshtein et al. (1)
derived a joint uncertainty function equation 7 in ref. 1) that
characterizes the distribution of expected uncertainty of mea-
surement across the stimulus space.

Invariant Shape of the Optimal Set.Minima of the joint uncertainty
function for every speed form the “optimal set” of spatiotemporal
measurement—a set of stimulus conditions at which individual
speeds are measured with minimal uncertainty. This optimal set
may have a variety of shapes in the stimulus space, depending on
how the components of measurement uncertainty combine in the
joint uncertainty function. However, the optimal set is an ab-
straction that disregards two basic facts of biological vision.
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First, the extent of neuronal receptive fields across speeds is not
negligible. Visual information is necessarily integrated across
speeds. When this constraint is taken into account, the shape of
the optimal set has an invariant shape: a rectangular hyperbola in
the parameter space (equation 10 in ref. 1).

Position of the Optimal Set. Second, different speeds are not equally
important for perception. Because of its limited resources, bi-
ological vision cannot optimize measurement of every speed.
Visual systems must determine how to allocate resources across
stimuli, according to stimulus importance or frequency of the
stimulus in the environment. In the framework of Gepshtein et al.
(1), the most suitable conditions for speed estimation with limited
resources are obtained when contributions of individual speeds
are weighted according to the distribution of speed in the stimu-
lation. In effect, the position of the optimal set in the stimulus
space changes together with the distribution of speed in the en-
vironment (equation 21 and figure 8 in ref. 1). For example, an
increase in the mean stimulus speed leads to a shift of the optimal
set, as illustrated in Fig. 2C. [The space-time representation of
stimuli used by Gepshtein et al. (1) is converted to the spectral

representation using standard assumptions (3, 4) summarized in
ref. 1, pp 14–15.]

Changes in other aspects of stimulus statistics also affect the
position of the theoretical optimal set. In this study we focus on
changes in the mean speed of stimulation, because the ensuing
pattern of sensitivity changes is highly distinctive: the gains and
losses of sensitivity expected by the system account within speeds
(Fig. 2C) stand in stark contrast to the monotonic transition
from losses to gains across speeds expected by the stimulus ac-
count (Fig. 2B).
The theoretical optimal set corresponds to the empirical

maximal-sensitivity set (represented by curve “max” in Fig. 1D
and by the white crosses in Fig. 3B). Notice that, according to the
system account, the prediction is that changes in stimulus sta-
tistics lead to a shift of the optimal set, and not to a rigid
translation of the distribution of sensitivity in the stimulus space.
As the position of the optimal set changes, the sensitivity is or-
ganized around the new location of the optimal set in a way that
is generally different from a rigid translation of the distribution
of sensitivity.

1. Gepshtein S, Tyukin I, Kubovy M (2007) The economics of motion perception and
invariants of visual sensitivity. J Vis 7(8):8.1–18.

2. Gabor D (1946) Theory of communication. Institution of Electrical Engineers 93(Part III):
429–457.

3. Nakayama K (1985) Biological image motion processing: A review. Vision Res 25(5):
625–660.

4. Heess N, Bair W (2010) Direction opponency, not quadrature, is key to the 1/4 cycle
preference for apparent motion in the motion energy model. J Neurosci 30(34):
11300–11304.
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Fig. S1. Results of experiment 2: Sensitivity estimates within speeds. The central panel reproduces the stimulus grid from Fig. 3A. Disk locations represent the
tested spatiotemporal stimulus conditions, and disk colors represent whether stimulus frequency increased (black), decreased (white), or did not change (gray)
in the high-speed context relative to the low-speed context. (Insets) These seven panels contain scatter plots of sensitivity at the seven stimulus speeds using the
fitted Kelly functions vs. the “raw” estimates produced by our measurement procedure. Symbol shapes indicate the context of stimulation: circles for high
speed and squares for low speed. Displays of correlation coefficients on top left of every inset indicate that the raw estimates of sensitivity were well ap-
proximated by Kelly functions. The data deviating from the diagonal line indicate conditions where the Kelly model fitted sensitivity estimates less successfully.
(We found that most of these conditions were localized at the top right of the main panel, i.e., at high spatiotemporal frequencies. These conditions had only
a small effect on the template-matching computation for Fig. 6A because they were outside of the regions where gains and losses of sensitivity were expected
by the system account.) Adaptation caused both increments and decrements of sensitivity within every tested stimulus speed, represented by color: red for
increments and blue for decrements of sensitivity change, in the high-speed context relative to the low-speed context.
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Fig. S2. Sensitivity maps for all observers are displayed for the high-speed and low-speed contexts in the first and second columns, respectively, using the same
convention as in Fig. 4A. Change maps for all observers are displayed in the third column. In contrast to Fig. 5, here the magnitudes of sensitivity change are
scaled by posterior error estimates provided by the Bayesian estimation procedure (Methods).
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Fig. S3. Derivation of the system template of sensitivity change. (A) The black curves represent conditions of maximal sensitivity predicted by the system
account of adaptation (1) for the low-speed (thin curve) and high-speed (thick curve) environments. The yellow disk marks the intersection of the curves. Focal
changes of sensitivity are expected in specific regions of the change map relative to the maximal sensitivity curves. (The theoretical change map in the
background marks the expected gains and losses of sensitivity using shades of red and blue, respectively, i.e., using the same conventions as Figs. 4B and 5.) As
stimulus context changes from low-speed to high-speed, the horizontal branch of the curve moves up on the temporal axis (upward black arrow), creating
regions of gains and losses of sensitivity at high and low temporal frequencies, respectively. Similarly, the vertical branch of the curve moves down on the
spatial axis (leftward black arrow), creating regions of gains and losses of sensitivity at low and high spatial frequencies, respectively. (B) The black lines indicate
boundaries between the regions where distinct changes of sensitivity are expected. Spatial boundary S separates gains from losses at low spatial frequencies,
and temporal boundary T1 separates gains from losses at low temporal frequencies. Speed boundaries V1 and V2 separate regions across speeds, and temporal
boundary T2 limits the region of expected sensitivity loss at high spatial frequencies.
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