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Efficient Discrimination of Temporal Patterns
by Motion-Sensitive Neurons
in Primate Visual Cortex

fidelity. Information-theoreticmeasures, by contrast, ex-
press not only what stimulus characteristics are en-
coded ina spike train but also how well they are encoded
(see, e.g., Rieke et al., 1997).

We have explored how motion-sensitive neurons in

Giedrius T. Burac̆as,*† Anthony M. Zador,*
Michael R. DeWeese, and Thomas D. Albright*
*Howard Hughes Medical Institute
and Sloan Center for Theoretical Neurobiology
The Salk Institute for Biological Studies
La Jolla, California 92037 the middle temporal (MT) cortex of alert monkeys en-

code rapidly and unpredictably changing stimuli. We
have adopted an approach in which encoding is defined
in terms of the stimulus features that a neuron is bestSummary
able to discriminate rather than in terms of the features
that drive it to fire fastest. We quantitate an averageAlthough motion-sensitive neurons in macaque mid-
neuronal discriminative power in terms of the informa-dle temporal (MT) area are conventionally character-
tion conveyed by the spike train about the stimulus. Inized using stimuli whose velocity remains constant for
this approach, the optimal stimulus is defined as the one1–3 s, many ecologically relevant stimuli change on a
that produces the highest information rate. We thereforeshorter time scale (30–300 ms). We compared neuronal
searched for the stimulus ensemble that maximized thisresponses to conventional (constant-velocity) and time-
rate.varying stimuli in alert primates. The responses to both

Our major finding is that neurons in area MT of alertstimulus ensembles were well described as rate-mod-
monkeys encoded information at much higher ratesulated Poisson processes but with very high precision
when driven by stimuli with a rich temporal structure(z3 ms) modulation functions underlying the time-
than when driven by conventional (constant-motion)varying responses. Information-theoretic analysis re-
stimuli (Bair et al., 1996, 1997). The increased informa-vealed that the responses encoded only z1 bit/s about
tion was due to the enhanced stimulus-locked timingconstant-velocity stimuli but up to 29 bits/s about the
precision of the neuronal response; trial-to-trial variabil-time-varying stimuli. Analysis of local field potentials
ity in the spike count was the same for both types ofrevealed that part of the residual response variability
stimulus. Analysis of local field potentials suggestedarose from “noise” sources extrinsic to the neuron.
that at least part of the spike-count variability was dueOur results demonstrate that extrastriate neurons in
to trial-to-trial variability in the inputs driving the neuronsalert primates can encode the fine temporal structure
rather than noise sources intrinsic to the neuron underof visual stimuli.
study.

We used two methods to calculate information rates.Introduction
The direct method estimates the total information avail-
able in the spike train about all aspects of the stimulus,The most popular experimental approach (Adrian, 1926;
while the reconstruction method estimates the informa-Hubel and Wiesel, 1962) to studying the neuronal encod-
tion about some specific stimulus parameter(s) (e.g.,ing of sensory stimuli makes use of stimuli whose prop-
direction of motion). A comparison of these rates sug-erties are constant over one to several seconds. In this
gested that about half of the available information en-paradigm, response properties are summarized by a
coded the direction of stimulus motion under our condi-tuning curve, which presents the firing rate as a function
tions.of some stimulus parameter. The “firing rate” is typically

Portions of this work have previously appeared in con-defined as the number of spikes (averaged over re-
ference abstracts (Burac̆as et al., 1996, 1997, Soc. Neu-peated stimulus presentations) generated in a time win-
rosci., abstracts).dow of several seconds, and the optimal stimulus is

then defined in terms of the stimulus features that elicit
the highest firing rate. Results

Under ecological conditions, visual stimuli rarely re-
main constant for longer than a fraction of a second: We present our results as a contrast between neuronal
eye movements, self-motion, and object motion render encoding of constant-motion and variable-motion stim-
the visual scene highly variable. Moreover, an organism uli by area MT neurons of alert monkeys. The analysis
outside of the laboratory often does not have the luxury of the encoding of the constant-motion stimulus serves
of averaging several stimulus presentations over ex- as a baseline against which the results from the variable-
tended time intervals, but must instead base its (some- motion stimulus are compared.
times life-or-death) decisions on the neuronal response
during a single “trial” of 30–300 ms duration. Under such Encoding of Constant-Motion Stimuli
conditions, the fidelity of neuronal responses becomes in Area MT Responses
a critical factor. Because classical tuning curves depend Neurons in area MT of primate visual cortex encode
only on the mean firing rate, and not on the variability information about the velocity (direction and speed) of
about that mean, they provide no insight into neuronal moving images (Maunsell and Van Essen, 1983; Albright,

1984). We recorded extracellularly from individual neu-
rons in area MT of rhesus monkeys (Macaca mulatta)†To whom correspondence should be addressed.
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Figure 1. MT Neurons Produce Highly Variable Responses When
Presented with Constant Motion Stimuli

The top curve shows a typical poststimulus time histogram (PSTH)
obtained using bins of 1 ms width for 62 presentations of the stimu-
lus, the spatial profile of which is illustrated in the inset. Rasters Figure 2. The Information Transmitted by a Neuron Is Small in Re-
illustrating spike occurrences on individual trials are shown in the sponse to Constant Motion Stimuli
bottom panel.

(a) Neurons in area MT are directionally sensitive. A typical direction
tuning curve derived from the average firing rate during presentation
of the constant-motion stimulus is shown in polar coordinates. Thewho viewed moving sinusoidal gratings windowed by a
angular axis represents the direction of stimulus motion; the radial

stationary Gaussian envelope (Gabor patch; Figure 1, axis represents the average firing rate (spikes/s). Note that this
inset). We will refer to this as the “constant-motion stim- neuron is almost 10 times more responsive to stimuli moving in the
ulus.” As expected, these neurons responded selec- preferred direction than the antipreferred direction.

(b) An MT neuron can be informative about directions that are nottively to different directions of stimulus motion (Figure
near the peak of its conventional directional tuning curve. In this2a).
polar plot, the radial axis represents I(u), which can be thought ofThe efficiency with which neurons encode the direc-
as the “information per direction” conveyed by the spike count intion of stimulus motion can be quantified by the relative
the first second after stimulus presentation (bits per first second)

entropy I(u) (see, e.g., Cover and Thomas, 1991). Intu- (see Experimental Procedures). Note that the transmitted informa-
itively, I(u) can be interpreted as the “information per tion is within a factor of two of its greatest value for all directions,

despite nearly an order of magnitude in range of average firing ratesdirection” (see Experimental Procedures for details).
illustrated in (a).Figure 2b shows the information per direction I(u), which
(c) The spike count does not convey much information about thehas units of bits, for the first second following stimulus
direction of constant motion stimuli, even after a full second follow-

presentation. I(ut) spans only a 2-fold range, in contrast ing the stimulus onset. The bar graph is a frequency distribution
with the nearly 10-fold range of the firing rate (Figure across cells of information about direction of motion after 1 s of
2a). Thus, the informational tuning curve indicates that stimulus onset (mean 5 0.89 bits per first second; n 5 12).
the spike train carries some information about all direc-
tions. bits/spike. These values are in agreementwith estimates

The number of spikes fired during a 1 s trial is insuffi- of the information transmitted by cells in the retina (Fitz-
cient to discriminate reliably among the eight possible Hugh, 1957) and inferior temporal cortex (Optican and
stimulus directions. The discriminative capacity is given Richmond, 1987) in response to constant stimuli.
by the total information rate, which is obtained by aver- The discriminative capacity of a code based on spike
aging the information perdirection over all eightstimulus count is limited by two factors. First, the dynamic range
directions. Perfect discrimination between all eight di- of the spike rate is limited, so that the maximum number
rections would require log28 5 3 bits, while this MT of distinct directions that could possibly be distin-
neuron conveys only 1.38 bits of information about the guished based on the spike count in any fixed time
direction of stimulus motion in 1 s. Similar results were window is bounded by the maximum number of spikes
obtained from other area MT neurons (n 5 12, mean 6 the neuron can fire in that window. For example, if a
SD 5 0.89 6 0.29 bits/s; Figure 2C). One bit is sufficient neuron can sustain a rate no higher than 100 spikes/s,
to discriminate between 2#bits 5 21 5 2 possibilities with then on a given trial the spike count in 1 s must be one
100% accuracy or among a greater number of possibili- of 101 possible values (0, 1, ..., 100). Therefore, the spike
ties with lower accuracy (see Experimental Procedures, count can in principle distinguish at most among 101
Signal Detection versus Information Theory). Since the directions corresponding to log2101 ≈ 6.7 bits/s. Second,
firing rate (averaged over all eight directions) is about the spike train is noisy; i.e., it exhibits considerable trial-

to-trial variability, which is consistent with a Poisson40 spikes/s, the average information transmitted is 0.025
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Furthermore, when the stimulus is constrained to move
in one of two directions (along the preferred/antipre-
ferred axis), an even larger fraction (80%) of the total
information was available by 200 ms (Figure 3a, dashed
line). Thus, particularly for short intervals, the informa-
tion available about the two- and eight-direction stimuli
differs only slightly. Similar saturation has been reported
in earlier studies of the primate inferior temporal cortex
(Optican and Richmond, 1987; Tovee et al., 1993).

Figure 3b shows the instantaneous information rate
for both stimulus conditions obtained by taking the tem-
poral derivative of the information curves in Figure 3a.
The instantaneous information rate rapidly attains a
peak value of 12 bits/s but quickly declines to a steady
state of nearly 0 bits/s, so that the accumulated informa-
tion is small at the end of the trial. The early peak in the
instantaneous information rate raised the question of
whether the neuron could sustain this rate for extended
periods of time.

Encoding of Rapidly Changing Stimuli
The low information rate (z1 bit/s, 0.025 bits/spike) elic-
ited by the constant-motion stimulus might result from
a mismatch between the impoverished stimulus set we
used and the truediscriminative capacity of MT neurons.
Such a mismatch has been reported in the blowfly,
where the motion-sensitive H1 neuron transmits infor-
mation at very high rates in response to stimuli with

Figure 3. Most of the Information about the Direction of the Con- rich temporal structure but not in response to more
stant Motion Stimulus Is Available Immediately after the Stimulus conventional constant-motion stimuli (de Ruyter van
Onset

Steveninck et al., 1997). That such a mismatch also
(a) The information for the constant motion stimulus grows rapidly

accounts for the low information rates seen in MT neu-for only about the first 250 ms. The curves represent the accumu-
rons is not at all self-evident: flies have only a handful oflated information conveyed by the spike count about stimulus direc-
motion-sensitive neurons, so it would not be surprising iftion as a function of the time since stimulus onset for two different

stimulus ensembles. The dashed curve shows that the information they employed a computational strategy very different
rapidly saturates when the stimuli could have moved in one of two from that used by monkeys, a strategy in which nearly
equally likely directions. The total amount of information about direc- every spike from every neuron was significant. However,
tion available in this stimulus ensemble was log2(2) 5 1 bit (lower

the steep initial increase of the information (Figure 3)thin horizontal line). The solid curve represents the same quantity
suggested that constant-motion stimuli were similarlyfor a stimulus that moved in one of eight equally likely directions;
mismatched to the primate visual system.the available information in this ensemble was log2(8) 5 3 bits (upper

thin horizontal line). Even after the full 3 s of stimulation, the spike In order to test whether the transiently elevated infor-
count contains just over half of the available information. Note that mation rate seen in the first few hundred milliseconds
a 3-fold increase in the available information results in a small differ- could be sustained over longer periods, we designed a
ence between these curves.

set of richer visual stimuli.These stimuli switch randomly(b) The information rate for the constant motion stimulus is high at
between a neuron’s preferred and antipreferred direc-first but quickly decays. The dashed curve shows the temporal
tions on an ecologically relevant time scale (about everyderivative of the accumulated information (i.e., the instantaneous

information rate) corresponding to the dashed curve in (a) (two- 30–300 ms; Figure 4a). We constrained the range of
direction ensemble). The solid curve shows the information rate directions to only two values since, as noted above, an
corresponding to the solid curve in (a) (eight-direction ensemble). average MT neuron is unable to discriminate reliably

among more than two directions within this short time
interval.process (see Figure 1 and below). In this case, the

amount of information drops to at most 2.2 bits/s, corre- To quantitate the capacity of MT neurons to discrimi-
nate time-varying stimuli, we first applied a direct infor-sponding to four to five directions. In practice, the infor-

mation per direction is even lower because direction is mation estimation method (DeWeese, 1996; Stevens
and Zador, 1996; de Ruyter van Steveninck et al., 1997;not optimally mapped to a neuron’s firing rate.

Figure 3a shows that the information is a rapidly satu- see Figure 5a) to 28 cells recorded from two alert mon-
keys. The direct method compares response reliabilityrating function of the time after stimulus onset; i.e., the

slope of the curve is steepest immediately after the to response repertoire. Response reliability was as-
sessed by presenting the same time-varying stimulusstimulus onset (Figure 3b). Although the total information

transmitted by the neuron of Figures 1–3 in 1 s was only repeatedly on many trials (Figure 4b), while repertoire
was assessed by presenting stimuli with different tem-1.38 bits, over 50% of that information (0.76 bits) was

available within the first 200 ms (Figure 3a, solid line). poral structure on different trials (Figure 4c). Intuitively,
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terms of the total entropy of the spike train, the reliability
in terms of its conditional entropy, and the Shannon
mutual information as the difference between these en-
tropies (see Experimental Procedures).

The results shown in Figure 4 demonstrate that MT
neurons can sustain high information rates if the stimu-
lus has a rich temporal structure. The responses illus-
trated in Figure 4, for example, convey 1.4 bits/spike,
which at a spike rate of 21 spikes/s yields 29 bits/s.
Similar measures were computed for each of 28 neurons
and are plotted on the right side of Figure 6a. The mean
of this distribution is 1.5 bits/spike (12 bits/s; Figure
6b), which implies that on average an MT neuron can
discriminate about 212 (5 4 3 104) different temporal
patterns of 1 s duration. This remarkable discrimination
performance is exhibited only when the stimulus offers
novelty at every instant in time, i.e., when the total stimu-
lus entropy grows linearly with time. It is interesting to
note that the information rate we observed is compara-
ble to the 1–3 bits/spike reported in a wide variety of
other systems (see, e.g., Rieke et al., 1997) but is much
higher than early reports for neurons in monkey cortex
(,0.1 bits/spike; Optican and Richmond, 1987; cf. Bair
et al., 1997).

The direct method permits information to be esti-
mated without specifying which aspect of the stimulus
is being encoded in the spike train. In order to measure
the amount of information conveyed specifically about
the stimulus direction at each frame, we also employed
a reconstruction method (de Ruyter van Steveninck and
Bialek, 1988; Rieke et al., 1997; see Figure 5b). This
method gives lower information estimates (left side of
Figure 6a) than the direct method for two reasons. First,
it reflects only information associated with a single stim-
ulus parameter (direction at each video frame). This
method discards information that a neuron can carry
about other stimulus parameters, such as the spatial
phase of the Gabor patch and the temporal phase of
monitor refresh. Second, the estimate of the information
rate also depends on the quality of the reconstruction
algorithm—to the extent that the reconstructor is subop-
timal, this method underestimates the information rate.

The average information obtained from 26 cells using
this reconstruction method is only 0.6 bits/spike (5.5

Figure 4. MT Neurons Can Discriminate Time-Varying Stimuli Much bits/s; Figures 6b and 6c, center). Therefore, when we
More Effectively Than Conventional Constant-Motion Stimuli relax our assumptions about what features are encoded
(a) The stimulus switched rapidly and stochastically between the and how they are encoded by using the direct method,
preferred and antipreferred directions (see Experimental Proce- we obtain twice the information rate found with the re-
dures).

construction method (cf. Figures 6b and 6c, center and(b) Repeated presentations of the same time-varying stimulus pro-
right).duced stimulus-locked responses with high timing precision. The

top curve shows the PSTH resulting from the time-varying stimulus
depicted by the lower curve; response rasters are displayed below.
These responses were used to estimate the conditional entropy (see Analysis of Response Variability
Experimental Procedures). The stimulus trace was aligned with the The trial-to-trial variability of the spike count, and the
response peaks by shifting it by the latency of 60 ms. The stimulus spike timing precision, are the two critical factors that
parameters were a 5 2, b 5 1, p 5 0.33.

together determine a neuron’s discriminative power.(c) Presentation of different instantiations of the stimulus, drawn
The observed spike-count variability, as quantified byrandomly from the same ensemble as in (b),produced highly variable
the Fano factor (the variance divided by the mean ofresponses. The PSTH (top) is shown above the response rasters.

These responses were used to estimate the total entropy. the spike count) only rarely fell below that predicted by
a Poisson process, which has a Fano factor of unity.
The average Fano factors were 1.27, 1.23, and 1.36 forthe information conveyed by the spike train is large if
constant-motion, repeated, and random stimuli, respec-(1) the response repertoire is rich and (2) the response

reliability is high. The repertoire can be quantified in tively, and ranged from 0.66–2.36 using a time window
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Figure 5. Two Methods Used to Measure In-
formation

(a) Direct information estimation methods do
not require the experimenter to know what
aspects of the stimulus are encoded, nor how
they are encoded in the spike train. Our infor-
mation estimate is the difference between the
entropy calculated from responses to ran-
domly generated stimuli [H({t})] and the en-
tropy of responses to a specific repeated
stimulus drawn from the same distribution
[H({t}|s)] (see Experimental Procedures).
(b) Reconstruction methods for estimating in-
formation can provide lower bounds to the
information and are useful for determining
about which aspects of the stimulus the cell
is informative. Our reconstruction method es-
timates information as the difference be-
tween the entropy of an optimized nonlinear
reconstruction of the random stimulus [H(sest)]
and the entropy of the errors made by the
reconstruction [H(sest|s)].

of 100 ms. The Fano factor showed a consistent increase responses to the rapidly varying ensemble (see also
Reich et al., 1997).with window size (Figure 7a; see also Teich et al., 1990).

The Fano factor was also somewhat lower (mean 6

SD 5 1.1 6 0.3) in the 40 ms windows centered on the Sources of Response Variability
stimulus-locked peaks of the response (see Figure 7b) The observed trial-to-trial variability in spike count (Fig-
but still near that expected from a Poisson process. ure 4) must arise from some combination of twosources.
Thus, individual MT neurons remain highly variable even It might reflect some source of “intraneuronal noise,”
for the repeated time-varying stimulus. By contrast, ver- i.e., variability specific to the neuron whose activity is
tebrate retinal ganglion neurons (Berry et al., 1997) and being monitored. In view of the high fidelity of spike
motion-sensitive neurons in the fly (de Ruyter van Ste- transduction (Bryant and Segundo, 1976; Mainen and
veninck et al., 1997) can exhibit low, sub-Poisson spike- Sejnowski, 1995), the dominant mechanism underlying
count variability. Since the Fano factors we observed intraneuronal noise is probably synaptic unreliability (Al-
were about thesame for the constant and rapidly varying len and Stevens, 1994; Stratford et al., 1996; Dobrunz
stimulus ensembles, they could not have been responsi- and Stevens, 1997; Zador, 1998). Alternatively, the vari-
ble for the dramatic increase in the information rate ability could reflect “extraneuronal noise,” i.e., trial-to-
observed in the latter case. trial variability already present among the inputs to the

By contrast, the timing precision of stimulus-locked neuron whose activity is being monitored. Plausible
responses was very high, in some cases as high as 1.9 sources of extraneuronal noise include intrinsic variabil-
ms (Figure 7c, black bars). Focusing solely on the first ity in the output of the neurons (e.g., in area V1) driving
spike yields slightly higher timing precision (Figure 7c, those in MT, the inconstancy of the retinal stimulus re-
gray bars; see also Bair and Koch, 1996). In fact, the sulting from eye movements (Gur et al., 1997), changes
spike timing precision for most neurons was several in the state of attention or arousal, and uncontrolled
times smaller than our stimulus timing interval (16.7 ms, activity outside the classical receptive field.
limited by the 60 Hz video refresh rate of our monitor), In order to distinguish these two broad classes of
suggesting that the estimated information rate might noise, we recorded local field potentials (LFPs) and sin-
have been even higher if stimuli were modulated on a gle unit activity simultaneously from a single electrode.
finer temporal scale. Thus, it was the high temporal The LFP reflects synaptic activity in the vicinity of the
precision, and not the spike-count variability, that ac- recording electrode (Gray, 1994; see Experimental Pro-

cedures) and thereby serves as a gross measure of thecounted for the high information rates observed in the
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Figure 6. MT Neurons Can TransmitHigh Rates of Information about
Temporally Rich Stimuli

(a) The plot compares the information (bits/spike) obtained with the
reconstruction (left) and direct (right) methods. Lines connect pairs
of values for the same cell.
(b) Individual spikes convey more information about the timing of
changes in direction of motion of time-varying stimuli than about
the exact direction of constant-motion stimuli. The left bar repre-
sents the average information conveyed by one spike (bits/spike)

Figure 7. Response Timing Precision Was High Despite the Highduring 1 s of stimulation by the constant-motion stimulus. The mid-
Trial-to-Trial Variability in the Spike Countdle and right bars represent the information per spike for time-
(a) Trial-to-trial spike-count variability was high as indicated by thevarying stimuli using the reconstruction method and direct method,
Fano factor. The Fano factor is defined as the ratio of the variancerespectively. Error bars represent standard errors across cells.
to the mean of the spike count for some fixed time window. The(c) Time-varying stimuli elicit higher information rates than do con-
Fano factor was computed as a function of window size for slidingstant-motion stimuli. The bars represent information per unit time
windows of different lengths for all three stimulus ensembles: con-(bits/s) rather than information per spike as in (b).
stant (gray dotted), random time-varying (black dotted), and re-
peated time-varying (black solid). Each curve is the mean (6 SEM)
over the 17 neurons for which all three stimulus ensembles were

magnitude of the input driving a region. Because they presented. All three curves are above 1 over the full range of time
intervals between 10 and 1000 ms. For a Poisson process, the Fanorepresent an average of activity over a region, LFPs do
factor is unity for all window sizes (thin horizontal line). The fact thatnot reflect intraneuronal noise, but they might reflect
the Fano factor was near or above unity for all window sizes, evensome sources of extraneuronal noise.
for the repeated stimulus ensemble, demonstrates that the spike-

As seen in Figure 7b, each reversal of the stimulus count variability is at least as high as that of a Poisson process.
motion from the antipreferred to the preferred direction (b) Responses showed high timing precision. The dotted line shows
induces an increase in the firing rate one latency (z60 the average response triggered by stimulus motion reversals from

the antipreferred to the preferred direction for a typical neuron. Thems) later. However, only a fraction of trials was associ-
solid line shows a sum-of-two-Gaussians fit. There are two peaksated with a spike during any such stimulus-locked in-
because the preferred motions occurred in pairs in the optimal stim-crease in firing rate. We therefore assessed whether the
ulus for this cell. The arrows represent standard deviations, which

presence or absence of such a spike on any particular quantitate timing precision.
trial could be predicted by the state of the local field (c) The timing precision was high across all cells. The black bars
potential immediately preceding the stimulus-locked in- show the frequency distribution of timing precisions as defined by

the standard deviations shown in (b); by this measure, the mediancrease.
timing precision was 6.17 (median-to-quartile differences were 21.49,We defined a measure R to quantitate the correlation
12.27 ms, n 5 17; this includes standard deviations from both Gaussi-between trial-to-trial fluctuations in the spike count and
ans as shown in [a]). The gray bars represent the frequencydistribution

the preceding LFP (see Experimental Procedures). R of the timing precision of the first spike occurring inside the response
had the following properties. If the LFP was uncorrelated region, which starts two standard deviations before the peak of the
with trial-to-trial variations in the spike count, then R 5 first Gaussian; by this measure, the median timing precision was 5.58

ms (median-to-quartile differences were 23.23, 11.03 ms; n 5 17).0.5. If the average LFP preceding a stimulus-triggered
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event was always higher on trials with no spikes than when challenged with rapidly changing stimuli, but
showed high (Poisson) spike-count variability under allon trials with spikes, then R 5 1. Note that R is defined so

that it depends only on trial-to-trial correlations between conditions (see also Reich et al., 1997). By contrast, the
H1 neuron of the fly shows much lower (sub-Poisson)the spike count and the preceding LFP and not on sys-

tematic variations in the LFP or the spike count during variability when driven by rapidly changing stimuli (de
Ruyter van Steveninck et al., 1997). This may reflecta single trial due to the details of the stimulus.

For the cell shown in Figure 7a, R 5 0.74. For all nine differences between the constraints on the motion-pro-
cessing circuitry of primates and flies. In primate cortex,cells in which LFPs were recorded, R . 0.5 (R 5 0.68 6

0.13 SD); of these, the effect was statistically significant there are many thousands of motion-sensitive neurons,
and they can pool responses to obtain a better estimate(p , 0.01) for six of nine cells (for this subset, R 5 0.75 6

0.07 SD). These results indicate that at least some of of the instantaneous spike rate, whereas flies have only
a few and so cannot effectively average. Note that suchthe trial-to-trial variability in the spike count can be ac-

counted for by population activity not locked to the pooling can readily compensate for high spike-count
variability but could not so easily compensate for lowstimulus.
temporal precision. Interestingly, the trial-to-trial vari-
ability is also low in the vertebrate retina (Berry et al.,Discussion
1997).

Our major finding is that individual neurons in area MT
of alert monkeys are better able to discriminate between Slow Synaptic Activity in Local Neuronal Population

Predicts Spike Occurrencestimuli with rich temporal structure than constant-motion
stimuli that differ only in direction. These neurons en- Previous studies have shown that the local field potential

can be used to predict the occurrence of a spike in thecoded stimulus direction rather coarsely (two to three
directions, corresponding to 1–1.6 bits of information, visual cortex of anesthetized cats (Arieli et al., 1996).

These results suggested that spontaneous activity ofin 1 s), and temporal integration over long intervals im-
proved discrimination only marginally. Moreover, most single neurons was due to the coherent activation of

synaptic input that was not time-locked to the stimulus.of the information associated with the constant motion
stimulus was carried by the transient response immedi- The coherent activation was attributed to “ongoing [neu-

ronal] activity,” probablydue in part to anesthesia-inducedately following stimulus onset. In order to test whether
these neurons could sustain the high information rate synchrony.

The present findings extend those results in two ways.seen during the stimulus onset transient, we examined
their responses to stimuli with rich temporal structure. First, our studies were performed in alert animals, so

that the coherent activity could not have been due toThese neurons encoded the temporal structure of rap-
idly changing stimuli with very high temporal precision, anesthesia (see also Arieli et al., 1996, Soc. Neurosci.,

abstract). Second, the stimuli we presented elicited spikeswhen temporal structure was defined on an ecologically
relevant timescale (equivalent to perfect discrimination with very high timing precision, so that there were well-

defined stimulus-locked periods during which a spikeof up to 229 ≈ 5 3 108 equally likely temporal patterns of
1 s duration or imperfect discrimination of a larger num- was expected to occur. We found that the LFP was

correlated with the presence or absence of a spike dur-ber of stimuli). This remarkable discrimination power was
due to the high temporal precision of the stimulus- ing these stimulus-locked periods, suggesting that LFPs

possessed stimulus-independent components, whichlocked response. By contrast, the trial-to-trial variability
of the spike count was high and consistent with a rate- nonetheless could predict spike occurrence.

Our results are also consistent with the observed cor-modulated Poisson process.
relation in the spike count of nearby neurons in area MT
of alert monkeys (Zohary et al., 1994). Since the LFPPrecision and Variability of Signaling
reflects the gross synaptic drive to a region, it wouldby MT Neurons
have been similar at two nearby neurons isolated by aThe first suggestion that area MT neurons might be
single electrode. Since thespike count from each neuronsensitive to the fine temporal structure of visual stimuli
would have been correlated with the LFP, the spikewas provided by Bair and Koch (1996), who found that
counts of the two neurons would have been correlatedthe response of these neurons to a repeated random-
with eachother. Whether the variability represents “noise”dot stimulus was replicable with high temporal precision
depends on its source, which has not yet been estab-(,2 ms) but only when the “stimulus coherence” fell
lished.within a certain range. In the current study, we confirm

and extend this finding to stimuli with a rich and well-
defined temporal structure and suggest that the high Rate versus Temporal Coding

The nature of the neural code has recently been sub-timing precision can be attributed to the fine temporal
structure of the stimulus. Under these conditions, the jected to renewed scrutiny (see, e.g., Softky and Koch,

1993; Ferster and Spruston, 1995; Shadlen and New-temporal precision of responses in area MT is of the
same magnitude as that observed in the rabbit retina some, 1995; Stevens and Zador, 1996; Rieke et al.,1997).

Part of this controversy arises from ambiguity in the(Berry et al.,1997). This is a striking fact, considering that
individual MT neurons lie a minimum of three synapses terms “temporal code” and “rate code.” According to

the classical notion of a rate code, all information in thebeyond retinal ganglion cells.
MT neurons responded with high temporal precision spike train is available in a single number, the mean
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firing rate. This definition was developed to describe objective estimate of the maximal discriminative power
a neuron can exhibit on a given stimulus ensemble.responses to stimuli whose properties are constant over

one to several seconds; it does not make clear predic- The reconstruction method, by contrast, assesses
only the information provided by the neuron’s outputtions about the responses to stimuli with temporal struc-

ture on a time scale short compared to typical interspike about some specific stimulus parameter; it discards all
information deemed by an experimenter to be irrelevant.intervals.

By contrast, the term temporal code is often taken to A comparison of the two estimates thereby provides a
way of testing the validity of ourbeliefs about the relativerefer to any code in which there is information contained

in a spike train beyond that available in the mean rate, importance of various stimulus parameters. In our ex-
periments, the information estimated using the recon-i.e., any code in which the fine temporal structure of the

spike train matters. For example, it has been suggested struction method was about half of that based on the
direct method (5.5 bits/s versus 12 bits/s). Since thethat single neurons in the primate inferior temporal

cortex driven by static stimuli use a form of temporal reconstruction method estimates a lower bound that is
limited by the quality of the reconstructor (see Experi-multiplexing to transmit independent information about

different stimulus parameters, such as the shape of com- mental Procedures), part of this difference may be due
to the possibility that our estimator may have been sub-ponents of static images (Optican and Richmond, 1987).

In our experiments, we found that the fine temporal optimal. However, the 2-fold difference in the informa-
tion estimates suggests that MT neurons may be sensi-structure of the spike train did encode information but
tive not only to the sign of speed/direction reversals atonly about the fine temporal structure of the stimulus.
each video frame but also to other dimensions of ourWhether this represents an example of temporal coding
stimulus ensemble, such as the spatial phase of theis essentially a matter of definition. The classical notion
Gabor patch, the monitor refresh phase, and so on.of rate coding is well defined under conditions where

The lower bound on the information rate (5.5 bits/s)the stimulus parameter encoded by a neuron changes
that we obtained using a nonlinear reconstruction methodslowly compared with the typical interspike interval,
is in close agreement with the 6.7 bits/s reported bysince under these conditions the mean rate can be esti-
Bair et al. (1997) using a different stimulus ensemblemated from the spike count. The classical notion does
and a linear reconstruction method. The two estimatesnot, however, make clear predictions when the stimulus
are of the same order despite the fact that the stimuliis changing rapidly. We prefer to view our results as
used by Bair and colleagues had an entropy severalconsistent with a natural extension of the classical rate
times higher than those used in the present study (overcoding model to rapidly varying stimuli.
100 bits/s versus 28–60 bits/s). This agreement suggests
that the information rate may not depend sensitively
on the stimulus ensemble, provided the ensemble isWhat Do Neurons in MT Encode?
endowed with sufficiently rich temporal structure.In the usual approach to studying what a neuron en-

The information-theoretic framework can be viewedcodes, the experimenter studies the effect on firing rate
as a generalization of the receiver operating characteris-of varying a stimulus parameter. This stimulus parame-
tics (ROC) analysis already widely used to quantitateterization may in some cases not fully characterize the
stimulus discriminability (Tolhurst et al., 1986; Newsomestimulus. By focusing on some aspects of the stimulus
et al., 1989; see Experimental Procedures). It might beto theexclusion of others, this approach implicitly injects
argued that ROC analysis better reflects the behaviorallythe experimenter’s preconceived biases about what the
relevant discriminative capacity than information theo-neuron encodes.
retic measures. This view arises because ROC is theA striking example of such a partial stimulus parame-
natural analysis for a common experimental paradigm,terization is the popular random dot stimulus, which
namely the two-alternative forced-choice paradigm. Ais usually described by two parameters—direction of
forced-choice paradigm may not, however, always beapparent motion of random dots and noise level (e.g.,
an appropriate model of natural behavior. InformationNewsome et al., 1989)—but ignores the detailed dynam-
theory may provide a more natural measure for behav-ics of individual dots. The dynamics of individual dots
ioral paradigms in which the task requires processingcan, however, have a significant and replicable effect
of the fine spatiotemporal structure of the stimulus oron the neuronal response, but these dynamics do not
when the task cannot be readily formulated in terms ofenter into the stimulus description. In effect, some of
discrimination.the information transmitted with high fidelity by MT neu-

What does a sensory neuron really encode? The time-rons is discarded as noise.
varying stimuli we tested are suboptimal for MT neuronsThe dependence on stimulus description can bemade
in the conventional sense because they elicit fewerexplicit by employing information-theoretic methods to
spikes than the “optimal” stimulus moving at a constantdissociate the total available information from the infor-
speed in a neuron’s preferred direction. However, if wemation about specific stimulus parameters. We achieved
define encoding in terms of discrimination (as measuredthis dissociation by using two independent methods to
by information rates), we find that the optimal stimuliestimate the information rate (see Figure 5). The direct
are stimuli that possess rich temporal structure.method assessed the neuron’s overall discriminative

power, without reference to the features being discrimi-
Experimental Proceduresnated. The direct method is thus independent of any

subjective assumptions about which stimulus parame- Stimuli
ters, given a particular stimulus ensemble, are and are The stimulus was a Gabor patch subtending 48 of visual angle pre-

sented on a 21 in computer monitor with 60 Hz refresh rate (Figurenot relevant. The direct method thereby furnishes an
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1a). Motion was achieved by a spatial phase shift occurring each depends on the choice of Dt and dt and the firing rate. The low
firing rates in our data (12 spikes/s on average) allowed us to obtainvideo frame (net speed of 128/s). Direction tuning was assessed

using stimuli whose phase moved with constant speed and direction accurate estimates from as few as 50 trials. Most of our estimates
were obtained using between 50 and 200 3 s trials for each (totalfor 3 s in one of eight different directions (constant-motion stimulus).

For the time-varying stimulus, direction reversals from the antipre- and conditional entropy) condition. The information estimates were
insensitive to the bin width (we used 4 and 8 ms bins) and usuallyferred to the preferred direction were followed by a frames in the

preferred direction, which were followed by b frames in the antipre- maintained the same value up to a window size of z100 ms. In order
to ensure that we were not overestimating information, we alsoferred direction, after which the stimulus became stochastic, ran-

domly switching to the preferred direction with probability p at each studied the behavior of the information estimate as a function of
the data set size. We found that the estimate remained robust untilframe. For example, a 5 1, b 5 0, p 5 1/2 corresponds to a random

coin flip on each frame, with an entropy of 1 bit/frame. The parame- the data set for single cells was reduced to 50 trials, consistent with
a theoretical worst-case (maximum entropy) estimate based on theters a (1–3 frames), b (0–3 frames), and p (0.28–0.5) were adjusted

online to maximize the information rate for each cell. In our experi- number of trials needed for the homogeneous Poisson process.
Since the window sizes we used were not exact multiples of thements, the stimulus entropy ranged from 14–60 bits/s.

refresh period (16.7 ms), the direct method captured information
about the temporal phase of the refresh in each window. Similarly,Behavioral Paradigm and Recording Techniques
the direct method could have also captured information concerningThe monkeys were alert, fixating their eyes and passively viewing
the spatial phase of the Gabor patch, which was independent of theduring stimulus presentation. Eye position was monitored with the
stimulus motion. Information about phase is not “extensive”; i.e., itscleral eye-coil method. Surgical procedures, single unit recording
does not grow in proportion to the window size. In fact, for alltechnique, and data acquisition system were standard and have
windows longer than the refresh period, the available phase informa-been described elsewhere (Albright, 1984; Dobkins and Albright,
tion per window is the same. In addition, we suspect the information1994). LFPs were recorded simultaneously with action potentials
rates we observed were actually underestimates of the maximumusing a tungsten microelectrode of 200–500 kV impedance at 1 kHz.
possible rate attainable, which could best bemeasured with a stimu-LFPs were low pass filtered (Nyquist cutoff frequency 5 625 Hz)
lus that changes more rapidly than the temporal precision of theand sampled at 1250 Hz.
neuron (z3 ms).
Reconstruction MethodData Analysis
The reconstruction method involved a nonlinear algorithm to recon-We used three data analysis methods derived from information the-
struct the times when the stimulus moved in the cell’s preferredory (Shannon, 1948; Cover and Thomas, 1991; Rieke et al., 1997).
direction from each spike train. At each frame, the stimulus eitherInformation per Direction
jumped in the preferred or antipreferred direction of the cell, so weFor the conventional constant-motion stimulus (Figure 1), we em-
represented both the original stimulus, s, and its reconstruction,ployed Bayes’ formula: the conditional probability of stimulus direc-
sest(z), as a string of ones and zeros for each frame; ones indicatedtion u given spike count z in a fixed time window is p(u|z) 5 p(z|u)
forward jumps, and zeros indicated backward jumps. For thisp(u)/p(z). We assumed that p(z|u) was distributed according to a
method, we exclusively used the second mode of stimulation de-homogeneous Poisson process for each stimulus direction. This
scribed above, where each 3 s stimulus presentation was different.approximation was justified, because (1) the interspike intervals

The algorithm worked as follows. First, we summed spikes oc-were nearly exponentially distributed and (2) the Fano factor was
curring in a window centered some delay after the presentation ofclose to 1. The relative entropy (Kullback-Liebler distance between
each stimulus frame. This delay could be thought of as the latencyp[z|u] and p[z]) I(u) is defined as
from the retina to the cell being studied and was close to 60 ms for

I(h) 5 o
z

p(z|h)log2[p(z|h)/p(z)]. all cells. Spikes were weighted by a Gaussian centered in the win-
dow, and the sum was thresholded to produce the reconstruction;
when the sum was greater than the threshold, the reconstructionThe mutual information between the stimulus direction t and the
was set to one in that frame; if not, it was set to zero. For mostspike count z is the average of I(t) over the stimulus distribution
cells, we used a stimulus distribution that did not allow two forward

Idir 5 op(h)I(h), jumps in a row (i.e., the stimulus had a “refractory period”). In these
cases, we sequentially searched for any consecutive pairs of ones

which suggests the interpretation of I(u) as the information per direc- in the reconstruction and set the reconstruction to zero in the frame
tion. We note, however, that this is not the only quantity whose with the smaller prethreshold sum. We then optimized the threshold,
average is the mutual information (cf. Rieke et al., 1997). We limited delay, and width of the Gaussian weighting function for each cell
our discussion to eight directions since the information did not using gradient ascent in the mutual information using the formula
increase appreciably with increasing number of directions. below.
Direct Method The mutual information between the stimulus s and the spike train
For the time-varying stimulus, we used both a direct method and a z is bounded from below by the information between the stimulus
reconstruction method to estimate the mutual information, I. In the and the reconstruction, which can be written as:
direct method, we used two modes of stimulation. First, we repeat-

I(s,z)$I(s,sest) 5 2o
sest

p(sest)log2p(sest) 1 o
s

p(s) o
sest

p(sest|s)log2p(sest|s).edly presented the same 3 s instantiation of the stimulus. This was
used to measure the “conditional” entropy, C, of the spike train.
Next, we presented different 3 s instantiations of the stimulus, which The first term on the right hand side of this equation is the entropy
were all drawn from the same distribution. This was used to measure of the estimate, which we approximated by assuming that forward
the “total” entropy, T, of the spike train. The information was then jumps in the stimulus estimate were uncorrelated. This turned out
given by I 5 T 2 C. To estimate the entropies, we counted the to be a good approximation because (1) as the direct method above
number of spikes in successive bins of size dt and constructed showed us, all cells produced spike trains that were consistent with
“words” (strings of fixed length in which “0” in a bin indicates the a modulated Poisson process, and (2) the reconstruction had at
absence of a spike and “n” the occurrence of n spikes) of window most a third as many forward jumps as the original stimulus even
length Dt; thus, each word contained Dt/dt bins. We then tabulated for the most responsive cells, so any correlations in the stimulus
the probability of occurrence pDt,dt(Wi) of each word Wi and computed due to its refractory period were on too short a timescale to affect
the associated entropies, the reconstructions. The second term on the right hand side of this

equation is the entropy of the errors in our reconstruction, which we
2o

Wi

pDt,dt (Wi)log2pDt,dt(Wi), bounded from above by assuming that all errors were uncorrelated.
Signal Detection Theory versus Information Theory

using Wi drawn from the repeated (Figure 4b) and random (Figure The estimated information rates may be interpreted in terms of the
4c) trials to estimate T and C, respectively (see also Strong et al., familiar “discrimination power,” which is given by the number of
1998). stimuli a system can discriminate with 100% reliability. In the two-

stimulus case, the information available in a signal about theseAccurate estimation of the information using the direct method
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stimuli maps directly onto the area of the ROC of signal detection fellowship from the McDonnell-Pew Center for Cognitive Neurosci-
ence at San Diego. T. D. A. is an Investigator of the Howard Hughestheory (Green and Swets, 1966). The mapping is one to one for

unimodal probability distributions. This can be readily seen by con- Medical Institute.
sidering the fact that both the ROC area and relative entropy for
unimodal distributions are strictly increasing functions of the dis-

Received December 9, 1997; revised March 6, 1998.tance between the modes. For example, in this case, 1 bit corre-
sponds to perfect (100% correct) discrimination performance,
whereas 0 bits correspond to chance performance (50% correct).

ReferencesHence, information may reflect the reliability of discrimination per-
formance. However, while information theory generalizes naturally

Adrian, E.D. (1926). The Basis of Sensation: the Action of the Senseto the analysis of signals with multimodal density functions, the
Organs (New York: W. W. Norton).analysis of such signals within the framework of conventional signal

detection theory is awkward. Thus, information theory can be seen Albright, T.D. (1984). Direction and orientation selectivity of neurons
as a generalization of ROC analysis within which both reliable and in visual area MT of the macaque. J. Neurophysiol. 52, 1106–1130.
unreliable discriminability can be readily assessed, regardless of Allen, C., and Stevens, C.F. (1994). An evaluation of causes for
the complexity of the probability distributions and the number of unreliability of synaptic transmission. Proc. Natl. Acad. Sci. USA 91,
stimulus choices. For a complementary approach to discriminability, 10380–10383.
see Gabbiani et al. (1996).

Arieli, A., Sterkin, A., Grinvald, A., and Aertsen, A. (1996). DynamicsLFP Analysis
of ongoing activity: explanation of the large variability in evokedIn order to quantitate the relation between the spike count and the
cortical responses. Science 273, 1868–1871.immediately preceding LFP, we defined a measure R as follows.
Bair, W., and Koch, C. (1996). Temporal precision of spike trains inThe measure was defined only for the responses to the repeated
extrastriate cortex of the behaving macaque monkey. Neural Comp.stimulus, for which stimulus-locked increases in firing rate were
8, 44–66.well defined for many trials (Figure 4a). As illustrated in Figure 7a,

associated with each reversal from the antipreferred to the preferred Bair, W., Cavanaugh, J.R., and Movshon, J.A. (1997). Reconstructing
stimulus velocity from neuronal responses in area MT. In Advancesdirection is an increase in the firing rate one latency (60 ms) later.

Let Ti denote the time of the ith reversal of the stimulus motion in Information Processing Systems, Volume 9. Proceedings of Con-
ference on Advances in Neural Information Processing Systems(measured from the onset of the stimulus). Further, let Niq represent

the number of spikes on the qth trial in a 30 ms window following (Cambridge, MA: MIT Press), pp. 34–40.
the latency (i.e., from Ti 1 60 and Ti 1 90), and let Liq represent the Berry, M.J., Warland, D.K., and Meister, M. (1997). The structure
average LFP on the qth trial in a 25 ms window before stimulus- and precision of retinal spike trains. Proc. Natl. Acad. Sci. USA 94,
triggered response (i.e., from Ti 1 25 and Ti 1 50). (Trials on which 5411–5416.
any “stray” spikes contaminated the preresponse period [0, Ti] were Bryant, H.L., and Segundo, J.P. (1976). Spike initiation by trans-
excluded from this analysis; this was typically ,10% of trials). Niq membrane current: a white-noise analysis. J. Physiol. 260, 279–314.
was typically 0, 1, or 2 spikes. We then defined the corresponding

Cover, T.M., and Thomas, J.A. (1991). Elements of Information The-average over trials of Liq as
ory (New York: John Wiley and Sons).

de Ruyter van Steveninck, R.R., and Bialek, W. (1988). Real-time
Li 5

1
M o

M

q51

Liq, performance of a movement sensitive neuron in the blowfly visual
system: coding and information transfer in short spike sequences.
Proc. R. Soc. Lond. B Biol. Sci. 234, 379–414.

where M is the number of trials. We also defined L0
i as the conditional

de Ruyter van Steveninck, R.R., Lewen, G.D., Strong, S.P., Koberle,average LFP for trials on which no spike occurred during the re-
R., and Bialek, W. (1997). Reproducibility and variability in neuralsponse period,
spike trains. Science 21, 1805–1808.

DeWeese, M. (1996). Optimization principles for the neural code. In
L0

i 5
1

M0
o
M0

q051
Liq0, Advances in Neural Information Processing, Volume 8. Proceedings

of Conference on Advances in Neural Information Processing Sys-
tems (Cambridge, MA: MIT Press), pp. 281–287.

where the index q0 runs over only those trials on which Niq 5 0, and
Dobkins, K.R., and Albright, T.D. (1994). What happens if it changesM0 is the number of such trials. Finally, Qi 5 1 if L0

i . Li; otherwise,
color when it moves? Neurophysiological experiments on the natureQi 5 0. Then, R is defined for each cell as
of chromatic input to macaque area MT. J. Neurosci. 14, 4854–4870.

Dobrunz, L., and Stevens, C.F. (1997). Heterogeneity of release prob-
R 5

1
K o

K

i51

Qi, ability, facilitation, and depletion at central synapses. Neuron 18,
995–1008.

Ferster, D., and Spruston, N. (1995). Cracking the neuronal code.
where K is the total number of reversals.

Science 270, 756–757.
The measure R so defined has the following properties. If the LFP

FitzHugh, R. (1957). The statistical detection of threshold signals inassociated with each stimulus reversal is uncorrelated with trial-to-
the retina. J. Gen. Physiol. 40, 925–948.trial variations in the spike count, then R 5 0.5. If the average LFP
Gabbiani, F., Metzner, W., Wessel, R., and Koch, C. (1996). Frompreceding each stimulus-triggered event is always (i.e., for all
stimulus encoding to feature extraction in weakly electric fish. Na-events) higher on trials with no spikes than on trials with spikes,
ture 384, 564–567.then R 5 1. Note that R only assesses the trial-to-trial correlation

between the spike count and the preceding LFP and not systematic Gray, C. (1994). Synchronous oscillations in neuronal systems:
variations in the LFP or the spike count due to the details of the mechanisms and functions. J. Comput. Neurosci. 1, 11–38.
stimulus. Green, D.M., and Swets, J.A. (1966). Signal Detection Theory and

Psychophysics. (New York: John Wiley and Sons).

Gur, M., Beylin, A., and Snodderly, D.M. (1997). Response variabilityAcknowledgments
of neurons inprimary visual cortex (V1) of alert monkeys. J. Neurosci.
17, 2914–2920.We are grateful to Wyeth Bair, Bill Bialek, Lisa Croner, Terry Sejnow-

ski, Mike Shadlen, and Steven Strong for useful discussions and Hubel, D.H., and Wiesel, T.N. (1962). Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex. J.valuable comments on the manuscript. This work was supported

by the Sloan Foundation. G. T. B. was partially supported by a Physiol. (Lond.) 160, 106–154.



Discrimination of Temporal Patterns by MT Neurons
969

Mainen, Z.F., and Sejnowski, T.J. (1995). Reliability of spike timing
in neocortical neurons. Science 268, 1503–1506.

Maunsell, J.H., and Van Essen, D.C. (1983). Functional properties
of neurons in middle temporal visual area of the macaque monkey.
I. Selectivity for stimulus direction, speed, and orientation. J. Neuro-
physiol. 49, 1127–1147.

Newsome, W.T., Britten, K.H., and Movshon, J.A. (1989). Neuronal
correlates of a perceptual decision. Nature 341, 52–54.

Optican, L.M., and Richmond, B.J. (1987). Temporal encoding of
two-dimensional patterns by single units in primate inferior temporal
cortex. III. Information theoretic analysis. J. Neurophysiol. 57,
162–178.

Reich, D.S., Victor, J.D., Knight, B.W., Ozaki, T., and Kaplan, E.
(1997). Response variability and timing precision of neuronal spike
trains in vivo. J. Neurophysiol. 77, 2836–2841.

Rieke, F., Warland, D., de Ruyter van Steveninck, R.R., and Bialek,
W. (1997). Spikes. A Bradford Book (Cambridge, MA: MIT Press).

Shadlen, M.N., and Newsome, W.T. (1995). Is there a signal in the
noise? Curr. Opin. Neurobiol. 5, 248–250.

Shannon, C.E. (1948). A mathematical theory of communication. Bell
Sys. Tech. J. 27, 379–423.

Softky, W., and Koch, C. (1993). The highly irregular firing of cortical
cells is inconsistent with temporal integration of random EPSPs. J.
Neurosci. 13, 334–350.

Stevens, C.F., and Zador, A.M. (1996). Information through a spiking
neuron. In Advances in Neural Information Processing Systems,
Volume 8. Proceedings of Conference on Advances in Neural Infor-
mation Processing Systems (Cambridge, MA: MIT Press), 75–81.

Stratford, K.J., Tarczy-Hornoch, K., Martin, K.A., Bannister, N.J.,
and Jack, J.J. (1996). Excitatory synaptic inputs to spiny stellate
cells in cat visual cortex. Nature 382, 258–261.

Strong, S.P., Koberle, R.R., de Ruyter van Steveninck, R.R., and
Bialek, W. (1998). Entropy and information in neural spike trains,
Phys. Rev. Lett. 80, 197.

Teich, M.C., Johnson, D.H., Kumar, A.R., and Turcott, R.G. (1990).
Rate fluctuations and fractional power law noise recorded from cells
in the lower auditory pathway of the cat. Hearing Res. 46, 41–52.

Tolhurst, D.J., Movshon, J.A., and Dean, A.F. (1986). The statistical
reliability of signals in single neurons in cat and monkey visual
cortex. Vision Res. 23, 775–785.

Tovee, M.J., Rolls, E.T., Treves, A., and Bellis, R.P. (1993). Informa-
tion encoding and the responses of single neurons in the primate
temporal visual cortex. J. Neurophysiol. 70, 640–654.

Zador, A. (1998). The impact of synaptic unreliability on the informa-
tion transmitted by spiking neurons. J. Neurophysiol. 19, 1230–1238.

Zohary, E., Shadlen, M.N., and Newsome, W.T. (1994). Correlated
neuronal discharge rate and its implications for psychophysical per-
formance. Nature 370, 140–143.


