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INTRODUCTION

Inferior temporal (IT) corlex is crucial for the perception of shape. Removal of this area produces severe impairments in
Jcaming and rccognizing shapes while leaving basic sensory capacilics, such as visual acuily, intact (2). Many IT neurons
respond selectively to complex shapes and pattemns (1,3,4). Oflen this selectivily is independent of the orientation, size or
location of the shape.

How do IT cells extract information about overall shapc?. One possibility is that they do so with a method of describing
boundary curvature known as the method of Fourier Descriplors (5), a procedure used in compuler patiem recognition systems.
This method depends first on determining the boundary orientation function for the shape, that is, the tangent angle of the shape's
boundary measured at regular intervals around the perimeter. Then the boundary orientation function is expanded in a Fourier
serics. Each term in the Fourier expansion is associated with a particular ffequency, amplitude and phase and is known as a
Fouricr Descriptor.  Any closed boundary or shape is fully described by its set of Fourier Descriptors. The inverse transform
of a single Fourier Descriptor uniquely determines a plane closed boundary having a specific number of lobes (frequency), lobe
indentalion (amplitude), and phase (orientation). (We call these shapes determined by a single Fourier Descriptor, "FD stimuli".)
This method of describing shapes is independent of both the position and size of the stimulus. Thus, Fourier Descriplors are
an cfficient method for representing shapes.

In an carlier paper (4) we proposed that IT neurons might code or represent shape by acling as detectors or filters for Fourier
descriptors. This hypothesis yields several testable predictions. First, at least some IT cells should be selective for specific FD
stimuli. Second, this selectivity should cover an adequate range of paramelers for coding an arbitrary shape. Third, this
selectivity should remain invariant over variations in stimulus size, exact retinal location and contrast. A fourth, and particularly
stringent test is that the response of an IT cell 10 a complex shape should be prediclable from the cell’s responses to FD stimuli.

In a previous paper (4) we reported tests of the first three of these predictions and found that about half of the visually
responisive IT cell sampled were systematically tuned (o the freqycncy of the FD stimuli. For the majority of the cells tested,
this selectivity for frequency remained constant over changes in the size, retinal location and contrast of the FD stimuli.
Furthermore, many IT cells were also sclective for the amplitude and phase of the FD stimuli. Thus, many IT cells met the first
three requirements of our hypothesis that IT cells represent shape by acling as filters for Fourier Descriptors.

In the present paper we report the fourth and critical test, namely that the response of an IT neuron to a complex closed
boundary can be predicted from its response to simple FD stimuli. Our results were clearly incompatible with the hypothesis
that single IT units act as linear filters for boundary curvature. Furthermore, we failed (o find evidence for any coherent non-

lincar coding scheme involving Fourier Descriptors.

METHOD
Two Macaca fascicularis were each recorded from repeatedly over a 4-8 week period. Details of surgical preparation and
recording procedures have been previously reported (1). All surgical procedures were performed under strictly aseptic conditions
using barbilurate anesthesia. During recording sessions animals were immobilized and ventilated with N,0/O,. At least 2 days

scparated successive recording sessions. Vamish coated tungsten microelectrodes were used 1o record extracellular potentials
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from single isolated neurons. All recording sites were localed within the central portion of cytoarchitectonic area TE.

After cach unit was isolated its receptive field was estimated using simple stimuli such as slits, edges and bars that were
vicwed monocularly through the cye contralateral to the recording site. A set of "simple FD" stimuli was produced, as previously
described (3,4), by inverting boundary angle functions defincd as a set of pure sinusoids. A second set of stimuli, "compound
FDs", was produced by inverting boundary angle functions defined as paired linear combinations of sinusoids. Each compound
FD was thus composed of two frequencies and the set included all possible combinations of the frequencies that constituted the
set of simple Fds. Finally, a third set of stimuli, "sectioned Fds", was produced by sectioning all members of the simple FD
set into "halves" and "quarters". In order to interpret the effects of ' these sectioned stimuli, we cofnpuled the Fourier transform
of the boundary anglc function for each. All FD stimuli were filled (white on black) boundaries of uniform intensity, equated
for total area, and positioned at the center of gaze. '

If a ncuron was found to be selective for frequency of simple FD stimuli, a subset of compound Fds was chosen to include
stimuli composed of [requencies that elicited combinations of strong and weak responses when presented as simple FDs, A
subsct of sectioned FDs was also chosen 1o include, typically, halved versions of the frequencies eliciting maximal and minimal
responses. The dala were analyzed by comparing responses predicted in accordance with a "linear FD filter" hypothesis with
the patiems of selectivily actually obtained from single IT neurons. According to this hypothesis, addition of a ineffective
frequency (little or no response) to a highly effective one (maximal response) should have a négligible effect on the response
to the resultant cé)mpound FD stimulus. The predicted response to any compound FD stimulus was approximated [rom the
response 1o the most effective simple FD in the pair. The responses lo seclioned FDs were also predicted according to the simple
lincar FD [ilter hypothesis: the predicted response was approximated from the response to the most effective of the individual

frequency components comprising the sectioned FD.

RESULTS
FD frequency selectivity

One hundred thirty-five visually responsive IT neurons were sampled along eleven penetrations in two animals. Forty-eight
percent (65/135) of the sample failed to respond to any of the simple FDs. Ninety-four percent (66/70) of the responsive cells
responded differentiaily as a function of frcquency, while the remainder failed to show any FD frequency selectivity.
Responses to compound FDs |

Twenty-four cells were tested with a set of compoundgFDs following initial assessment of FD frequency seleclivity. Examples
of data from two different cells are shown in Figs 1 and 2.

The cell in Fig 1 responded maximally to f3 and responses declined monotonically with increasing frequency (Fig 1A). This
cell was tested with compound FDs produced by combinations of f3 with two inefleclive frequencies, {11 and £32. A compound
FD derived from f11 and f32 was also used. The responses to these compound FDs are shown in Fig 1B along with the
predictions from our linear FD filter hypothesis, which anticipates that the response Lo a combination of frequency components
will be equal to the response Lo the most effective component [requency in the pair. The responses to the compound FDs differ
significantly from our predictions: although ineffective alone, addition of f11 or f32 aclually reduced sensitivity o the 13
frequency component.

The cell in Fig 2 responded strongly to {32, while. responses to the other seven frequencics were negligible (Fig 2A). This
cell was tested with two compound FDs produced by combining 32 with two ineffective frequencies, [3 and f8. The responses
1o these compound FDs are plotied in Fig 2B along with the linear FD filter prediclions. As can be seen, the responses to each
of these compound FDs are considerably smaller than our predictions; the cell scems incapable of detecling the presence of the

132 component in the company of non-optimal frequencies.
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Fig I: A: Seleclivity of a single IT ncuron for FD Fig 2: A: Sclectivity of a single IT neuron for FD
frequency. B: Actual (bars) and predicted rcsponses (dots) frequency. B: Actual and predicicd responses of the same
of the same ncuron for compound FDs. C: Actlual and neuron for compound FDs. C: Actual and predicted
predicled responses to sectioned (halved) FDs. responses lo sectioned (halved) FDs.

The overall relationship between our linear FD filter predictions and the responses of single IT neurons was quantified by a
simple correlation between predicted (based on responses lo simple FDs) and actual responses to compound FDs. The
distribution of these cocfficients is centered at zero, indicating a complcte failure to support our lincar FD filter hypothesis.
Responses to sectioned FDs

Sikleen cells were Lested with a set of sectioned FDs following initial assessment of FD frequency selectivity. Examples of
data from two such cells are shown in Figs 1C and 2C. The frequency seleclivily data for the same (wo neurons may be seen
in Figs 1A and 2A and their compound FD responses may be seen in Figs 1B and 2B. |

The first example, which responded maximally to f3, was tested with sectioned FDs derived from f3 as well as {rom {4, which
also elicited a good response, and 32, an ineffective FD frequeﬁcy. The responses (o these sectioned FDs are plotied in Fig
1C along with the predictions based upon the frequency content of the sectioned FD. According to this hypothesis, the cell in
Fig 1 should respond best to sectioned FD frequency 3 (of the three tested), since this is the stimulus that still contains the largest
complement of frequency 3. The tesponses to the sectioned FDs differ significantly from our predictions. In fact, responses
10 the three sectioncd FDs were nearly idemical.. suggesting that neither frequency spectra (in accord with our conclusions from
the compound FD manipulations rgponed above) nor shape "elements‘; (local aspeclts of the boundary contour) are relevant
paramelers for this particular IT neuron, despite notable selectivity for low frequency simple FDs.

The second example, which responded to 132 with négligible responses (0 the other simple FDs, was tested with seclioned
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FDs derived from {32 as well as from {3 and f8. The responses to these sectioned FDs are plotied in Fig 2C along with the
predictions from our two altemative hypotheses. According to the linear FD filter hypotheses, the cell should respond best ip
sectioned FD frequency 32 (of the three tested), since this is the stimulus that now contains the largest complement of frequency
32. Although behavior of this cell under these condilions was marginally consistent with the linear FD filter hypothesis
(responses being strongest to sectioned FD f32), the same cell failed the compound FD test (Fig 2B). An altemative
interpretation is suggested by the fact that responses to the three sectioned FDs used on this cell mirrored the pattem of
selectivity for simple FDs. This cell’s behavior is thus consistent with some type of selectivity for local aspects of boundary
curvature (however vaguely defined). ) \

The overall relationship between our linear FD filter predictions and the responses of single IT neurons was quantified by
calculation of a'simple correlation between predicted (based on responses to simple FDs) and actual responses to sectioned FDs,
The distribution of these coefficients is centered at zero, indi;cating a complete failure to support our linear FD filier hypothesis,
Non-linear FD filters?

Our data permit us to reject the possibility that IT neurons act as linear FD filters. The possibility of some non-linear
mechanism is much more difficult to dismiss. - We have observed, however, no consistent behavior across our sample of IT
neurons. Although inconclusive, this fact greatly lessens the plausibility of shape encoding by IT neurons acting as non-linear
FD filters.

DISCUSSION

We have performed the most direct and stringent test of the hypothesis that IT neurons encode complex shapes by acting as
fitters for Fourier Descriptors. To satisly this test we required that the response of an IT neuron to a complex shape be
predictable from knowledge of 1) the cell’s selectivity for simple FD frequency and 2) the FD frequency composition of the
complex shape. Using this criterion we failed (o find any support for a linear filtering process. We also failed to find evidence
for any consistent non-linear encoding scheme, although this possibility cannot be conclusively ruled-out, however unlikely.

The remarkable fact remains, nonetheless, that many IT neurons are selective for the frequency of simple FD stimuli. These
affeclively neutral stimuli thus provide a powerful means of characterizing and quantifying the shape selectivity of IT neurons
(3.4). They have also proved useful for demonstrating important IT traits such as position and size invariance and for studying
response habituation. The neural interactions that confer selectivity for FD stimuli and the underlying reasons for this property

remain mysteries ripe for further investigation,
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